- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Boussard-Pledel, Catherine (1)
-
Bureau, Bruno (1)
-
Cebulski, Józef (1)
-
Gala-Błądzinska, Agnieszka (1)
-
Golovchak, Roman (1)
-
Gruzeł, Grzegorz (1)
-
Kowal, Aneta (1)
-
Król, Nikola (1)
-
Lopushansky, Andriy (1)
-
Mahlovanyi, Bohdan (1)
-
Shpotyuk, Yaroslav (1)
-
Szmuc, Kamil (1)
-
Truax, Michael (1)
-
Łach, Kornelia (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Fabry disease (FD) is a rare disorder resulting from a genetic mutation characterized by the accumulation of sphingolipids in various cells throughout the human body, leading to progressive and irreversible organ damage, particularly in males. Genetically-determined deficiency or reduced activity of the enzyme (alpha – Galactosidase; α-Gal) leads to the accumulation of sphingolipids in the lysosomes of various cell types, including the heart, kidneys, skin, eyes, central nervous system, and digestive system, triggering damage, leading to the failure of vital organs, and resulting in progressive disability and premature death. FD diagnostics currently depend on costly and time-intensive genetic tests and enzymatic analysis, often leading to delayed or inaccurate diagnoses, which contribute to rapid disease progression. In this research, midinfrared Fiber Evanescent Wave Spectroscopy (FEWS) supported by statistical analysis and Machine Learning (ML) algorithms is shown to be an innovative and reliable method to detect globotriaosylsphingosine (Lyso-Gb3) FD biomarker in urine and serum samples by monitoring infrared spectra alone. ML showed a high selectivity for FD in the spectral range of Amide A and Amide I in blood serum, and α-D-galactosyl residues of glycosphingolipids in urine. The developed approach offers a promising, cost-effective express diagnostic tool sensitive enough for early FD detection and monitoring.more » « lessFree, publicly-accessible full text available April 1, 2026
An official website of the United States government
